Webinar: The Current State of the U.S. Science and Engineering Enterprise

What is the current state of science and engineering in the United States? How healthy is the U.S. STEM labor force? What is the level of U.S. investment in R&D across various sectors? How does the U.S. compare internationally in science and technology (S&T)? These are the types of questions addressed by the biennial report produced by the National Science Board — United States Science and Engineering Indicators — through the presentation of key quantitative measures of R&D, STEM education and workforce, and economic competitiveness.

On April 20, 2022 the Government-University-Industry Research Roundtable of the National Academy of Sciences, Engineering and Medicine will convene a webinar to discuss the 2022 Indicators report, which was released in January. The webinar will feature representatives of the NSB and the National Science Foundation who will discuss the report’s findings in relation to STEM education at all levels; the STEM workforce; U.S. and international research and development performance; U.S. competitiveness in high-technology industries; and invention, knowledge transfer, and innovation. The session will also include comments from Dr. France Córdova, former NSF Director and President of the Science Philanthropy Alliance, to discuss the Indicators data within the context of philanthropic contributions to science.

The session is free and open to the public but registration is required. To register click here.

New Survey:  Semiconductor Market Hampered by Demand/Supply Mismatch, Lack of Manufacturing Capacity

The U.S. Department of Commerce (DoC) released the results of a request for information (RFI) seeking data on the state of the semiconductor supply chain.

The DoC confirmed that there is a significant, persistent mismatch in supply and demand for chips, and survey respondents did not see the problem going away in the next six months. Median demand for the chips highlighted by the buyers who responded to the RFI was as much as 17% higher in 2021 than in 2019, and buyers aren’t seeing commensurate increases in the supply they receive.

The main bottleneck identified is the need for additional manufacturing or fab capacity. In addition, companies identified material and assembly, test, and packaging capacity as bottlenecks.

The RFI received more than 150 responses, including from nearly every major semiconductor producer and from companies in multiple consuming industries.

Other findings include:

  • The median inventory of semiconductor products highlighted by buyers has fallen from 40 days in 2019 to less than 5 days in 2021 (see Figure 2). These inventories are even smaller in key industries.
  • The RFI allowed us to pinpoint specific nodes where the supply and demand mismatch is most acute, and we will target our efforts moving forward on collaborating with industry to resolve bottlenecks in these nodes.
  • The primary bottleneck across the board appears to be wafer production capacity, which requires a longer-term solution.

DoC urged passage of semiconductor legislation pending in Congress — the United States Innovation and Competition Act (USICA) including $52 billion in funding to support domestic chip manufacturing.  That legislation remains stalled due to disagreements between the House and the Senate as well as a slowdown in annual appropriations across all agencies.

Industrial Policy — Can the U.S. Find Consensus, Consistency?

U.S. industrial and attendant technology policy has a long and tortured existence often rising and falling in a decadal threat cycle: communism in the 50’s/60’s, oil shocks in the 1970’s, and the rise of Japan in the 1980’s. For many years starting in the 1990’s, the term “industrial policy” was considered verboten, off-limits in policy circles especially among free-market Republicans who preferred to let market forces drive technology investments. This led to a whip-saw effect, U.S. technology initiatives would flourish in times of threat, then languish and die as the U.S. defaulted to market forces alone. Unfortunately, while market forces are highly efficient and effective in picking winners and losers, this process has left the U.S. vulnerable, as the market for critical technologies (and their attendant supply chains) globalized.

With these shifts becoming apparent in the past few years, Robert Atkinson of the Information Technology and Innovation Foundation (ITIF) is out today with a new white paper on Strategic Industrial Policy. Because of an increasing reliance on sophisticated globally-sourced dual-use technologies such as semiconductors, Atkinson argues that the United States should adopt what he terms a Strategic-Industrial Policy. In the white paper, Atkinson attempts to refute the standard arguments against industrial policy — picking winners and losers, focus on high profile failures, politicization risks — while arguing that the threat from China to both U.S. economic and national security demands a new approach to U.S. industrial policy.

Webinar: IBM’s Discovery Accelerator Partnerships

On December 9, 2021 at 1:00 EST, the National Academy of Sciences, Engineering and Medicine – Government-University-Industry Research Roundtable will convene a webinar to discuss the strategic goals and impact of IBM’s Discovery Accelerator Partnerships. Within the last year, IBM announced two significant partnerships that will deploy emerging technologies and advanced capabilities aimed at driving scientific discovery – the first, a ten-year partnership with Cleveland Clinic focused on discoveries in life sciences and healthcare; and the second, a five-year partnership with the United Kingdom’s Science and Technology Facilities Council, based at the Hartree National Center for Digital Innovation, which will drive innovations in life sciences, new materials development, environmental sustainability, and advanced manufacturing.

During this webinar, IBM officials discuss the Discovery Accelerator approach to partnership, collaborative and interdisciplinary research, and the application of emerging computing technologies to supercharge the pace of scientific discovery.

Click here to register

Workshop: NIST Artificial Intelligence Risk Management Framework

The National Institute of Standards and Technology (NIST) is developing a framework to better manage risks to individuals, organizations, and society associated with artificial intelligence (AI).

The Framework will be developed through a consensus-driven, open, transparent, and collaborative process that will include workshops and other opportunities to provide input. It is intended to build on, align with, and support AI risk management efforts by others.

NIST’s work on the Framework is consistent with its broader AI efforts, recommendations by the National Security Commission on Artificial Intelligence, and the Plan for Federal Engagement in AI Standards and Related Tools. Congress has directed NIST to collaborate with the private and public sectors to develop the AI Framework.

The on-going NIST effort aims to foster the development of innovative approaches to address characteristics of trustworthiness including accuracy, explainability and interpretability, reliability, privacy, robustness, safety, security (resilience), and mitigation of unintended and/or harmful bias, as well as of harmful uses. The Framework should consider and encompass principles such as transparency, fairness, and accountability during design, deployment, use, and evaluation of AI technologies and systems. These characteristics and principles are generally considered as contributing to the trustworthiness of AI technologies and systems, products, and services.

A initial virtual workshop to enable expert participation from industry, academia and government will be held on October 19-21.

Tech Transfer Presentation: The Maryland Industrial Partnerships Program

Washington Area Chapter of the Technology Transfer Society (T2SDC) will be hosting an online presentation on the Maryland Industrial Partnerships Program on Wednesday, October 20, 2021 from Noon to 1 p.m..

The Maryland Industrial Partnerships (MIPS) program leverages the resources of the University System of Maryland (USM) to help create new products and services that feed the growth of Maryland businesses. Since the program’s inception in 1987, MIPS–enabled products have generated sales of $42 billion.

MIPS provides funding, matched by participating companies, for university-based research projects that help the companies develop new products. The program is administered at the flagship campus at the University of Maryland, College Park, and works throughout the 12 member institutions of the University System of Maryland, plus Morgan State University and St. Mary’s College. In these academic-industrial, public-private partnerships, MIPS connects the resources of the Maryland public universities to businesses from all parts of Maryland.

Presenting will be Joseph Naft, Director of the Maryland Industrial Partnerships (MIPS) program of the University of Maryland (UMD).

To register, please go use the following link.

Event: Expanding Congressional S&T Assessment and Analysis Capacity

On Wednesday, March 17th at Noon, the DC Chapter of the Technology Transfer Society is sponsoring a briefing on the U.S. Government Accountability Office’s efforts to expand Congress’s capabilities in science and technology (S&T) analysis and assessment. Since the demise of the Office of Technology Assessment in the 1990’s, Congress has lacked robust in-house analytical capability to effectively analyze new scientific and technological advances. Rapid developments in S&T are transforming multiple sectors of society. Like all technological change, these developments bring both opportunities and the potential for unintended consequences. The ability of Congress to understand, evaluate, and prepare for such changes is critical for the United States to remain secure, innovative, and globally competitive.

In January 2019, GAO created the Science, Technology Assessment, and Analytics (STAA) team to build on and expand its decades-long work providing Congress with S&T analysis. STAA is a large interdisciplinary technical team that advises Congress, generates policy options, and informs legislation on topics in the computational sciences (such as artificial intelligence and advanced data analytics), physical sciences (such as sustainable chemistry and nuclear waste management), life sciences (such as epidemiology of emerging infectious diseases and biosurety of Select Agents), and engineering (such as IoT, 3D printing, and hypersonic systems).

Dr. Tim Persons and Dr. Karen Howard of GAO will discuss STAA’s history, organization, and its technology assessment portfolio.

Click here to register

U.S. Not Ready to Defend or Compete in the A.I. Era, Commission Concludes

Recommends an urgent, comprehensive, whole-of-nation action. The result: a 900-page hybrid mixture of national security policy and technology competitiveness recommendations.

Image

The National Security Commission on Artificial Intelligence (NSCAI) issued its final report on Monday, March 1st, 2021 framed by the great power competition between the United States and it’s allies and China. Commissioners called on the United States to drastically reorient government functions including its national security and technology apparatus to meet the coming national security challenges and opportunities of A.I.. The report is broken into two parts: Part I “Defending America in the AI Era,” and Part II “Winning the Technology Competition,” Both parts are interlinked and the commissioners emphasized that the United States stands to lose it’s technical advantage over geopolitical rivals within the next 10 years.

The 900-page report is a hybrid mixture of national security policy and technology competitiveness recommendations. Part I outlines what the United States must do to defend against the spectrum of AI-related threats from state and non-state actors and recommends how the U.S. government can responsibly use AI technologies to protect the American people and our interests. Part II outlines AI’s role in a broader technology competition and addresses critical elements of the competition and recommends actions the government must take to promote AI innovation to improve national competitiveness and protect critical U.S. advantages.

Part I recommendations:

  • Defend against emerging AI-enabled threats to America’s free and open society.
  • Prepare for future warfare.
  • Manage risks associated with AI-enabled and autonomous weapons.
  • Transform national intelligence.
  • Scale up digital talent in government
  • Establish justified confidence in AI systems.
  • Present a democratic model of AI use for national security.

Part II recommendations:

  • Organize with a White House–led strategy for technology competition.
  • Win the global talent competition.
  • Accelerate AI innovation at home.
  • Build a resilient domestic base for designing and fabricating microelectronics.
  • Protect America’s technology advantages.
  • Build a favorable international technology order.
  • Win the associated technologies competitions.