The State of U.S. Science and Engineering 2022

National Science Board S&E Indicators

The U.S. National Science Board has released their biennial report on the U.S. science and engineering (S&E) enterprise. The NSB Science & Engineering Indicators study is a key source of data on the status of U.S. R&D and STEM workforce investments and activities. The report analyzes the overall levels of investment in R&D at all levels (basic/applied/development) by all performers (academic/industry/non-profit/government) and source of funds (government/private/non-profit). It also compares and contrasts the performance of the U.S. with other countries.

Key findings include:

  • Global research and development (R&D) performance is concentrated in a few countries, with the United States performing the most (27% of global R&D in 2019), followed by China (22%), Japan (7%), Germany (6%), and South Korea (4%).
  • The global concentration of R&D performance continues to shift from the United States and Europe to countries in East-Southeast Asia and South Asia.
  • Many middle-income countries, such as China and India, are increasing science and engineering (S&E) publication, patenting activities, and knowledge- and technology-intensive (KTI) output, which has distributed science and technology (S&T) capabilities throughout the globe.
  • The proportion of total U.S. R&D funded by the U.S. government decreased from 31% in 2010 to an estimated 21% in 2019, even as the absolute amount of federally funded R&D increased. This translates into the weakening of the U.S. system of basic research which has long been a pillar of a strong U.S. S&E enterprise.
  • The U.S. science, technology, engineering, and mathematics (STEM) labor force represents 23% of the total U.S. labor force, involves workers at all educational levels, and includes higher proportions of men, Whites, Asians, and foreign-born workers than the proportions of these groups in the U.S. population.
  • Blacks and Hispanics are underrepresented among students earning S&E degrees and among STEM workers with at least a bachelor’s degree. However, their share of STEM workers without a bachelor’s degree is similar to their share in the U.S. workforce.
  • Disparities in K–12 STEM education and student performance across demographic and socioeconomic categories and geographic regions are challenges to the U.S. STEM education system, as is the affordability of higher education.
  • The United States awards the most S&E doctorates worldwide. Among S&E doctorate students in the United States, a large proportion are international and over half of the doctorate degrees in the fields of economics, computer sciences, engineering, and mathematics and statistics are awarded to international students.

This year the report marked significant changes to how it analyzes the science, technology, engineering and mathematics (STEM) workforce. It combines two major component into total STEM workforce: (1) S&E and S&E-related workers with a bachelor’s or higher degree and (2) skilled technical workers (STW) without such a degree.

Industrial Policy — Can the U.S. Find Consensus, Consistency?

U.S. industrial and attendant technology policy has a long and tortured existence often rising and falling in a decadal threat cycle: communism in the 50’s/60’s, oil shocks in the 1970’s, and the rise of Japan in the 1980’s. For many years starting in the 1990’s, the term “industrial policy” was considered verboten, off-limits in policy circles especially among free-market Republicans who preferred to let market forces drive technology investments. This led to a whip-saw effect, U.S. technology initiatives would flourish in times of threat, then languish and die as the U.S. defaulted to market forces alone. Unfortunately, while market forces are highly efficient and effective in picking winners and losers, this process has left the U.S. vulnerable, as the market for critical technologies (and their attendant supply chains) globalized.

With these shifts becoming apparent in the past few years, Robert Atkinson of the Information Technology and Innovation Foundation (ITIF) is out today with a new white paper on Strategic Industrial Policy. Because of an increasing reliance on sophisticated globally-sourced dual-use technologies such as semiconductors, Atkinson argues that the United States should adopt what he terms a Strategic-Industrial Policy. In the white paper, Atkinson attempts to refute the standard arguments against industrial policy — picking winners and losers, focus on high profile failures, politicization risks — while arguing that the threat from China to both U.S. economic and national security demands a new approach to U.S. industrial policy.

Webinar: IBM’s Discovery Accelerator Partnerships

On December 9, 2021 at 1:00 EST, the National Academy of Sciences, Engineering and Medicine – Government-University-Industry Research Roundtable will convene a webinar to discuss the strategic goals and impact of IBM’s Discovery Accelerator Partnerships. Within the last year, IBM announced two significant partnerships that will deploy emerging technologies and advanced capabilities aimed at driving scientific discovery – the first, a ten-year partnership with Cleveland Clinic focused on discoveries in life sciences and healthcare; and the second, a five-year partnership with the United Kingdom’s Science and Technology Facilities Council, based at the Hartree National Center for Digital Innovation, which will drive innovations in life sciences, new materials development, environmental sustainability, and advanced manufacturing.

During this webinar, IBM officials discuss the Discovery Accelerator approach to partnership, collaborative and interdisciplinary research, and the application of emerging computing technologies to supercharge the pace of scientific discovery.

Click here to register

U.S. Not Ready to Defend or Compete in the A.I. Era, Commission Concludes

Recommends an urgent, comprehensive, whole-of-nation action. The result: a 900-page hybrid mixture of national security policy and technology competitiveness recommendations.

Image

The National Security Commission on Artificial Intelligence (NSCAI) issued its final report on Monday, March 1st, 2021 framed by the great power competition between the United States and it’s allies and China. Commissioners called on the United States to drastically reorient government functions including its national security and technology apparatus to meet the coming national security challenges and opportunities of A.I.. The report is broken into two parts: Part I “Defending America in the AI Era,” and Part II “Winning the Technology Competition,” Both parts are interlinked and the commissioners emphasized that the United States stands to lose it’s technical advantage over geopolitical rivals within the next 10 years.

The 900-page report is a hybrid mixture of national security policy and technology competitiveness recommendations. Part I outlines what the United States must do to defend against the spectrum of AI-related threats from state and non-state actors and recommends how the U.S. government can responsibly use AI technologies to protect the American people and our interests. Part II outlines AI’s role in a broader technology competition and addresses critical elements of the competition and recommends actions the government must take to promote AI innovation to improve national competitiveness and protect critical U.S. advantages.

Part I recommendations:

  • Defend against emerging AI-enabled threats to America’s free and open society.
  • Prepare for future warfare.
  • Manage risks associated with AI-enabled and autonomous weapons.
  • Transform national intelligence.
  • Scale up digital talent in government
  • Establish justified confidence in AI systems.
  • Present a democratic model of AI use for national security.

Part II recommendations:

  • Organize with a White House–led strategy for technology competition.
  • Win the global talent competition.
  • Accelerate AI innovation at home.
  • Build a resilient domestic base for designing and fabricating microelectronics.
  • Protect America’s technology advantages.
  • Build a favorable international technology order.
  • Win the associated technologies competitions.