DARPA launches DPRIVE — Data Protection in Virtual Environments

The safety and security of critical information – whether it is sensitive intellectual property (IP), financial information, personally identifiable information (PII), intelligence insight, or beyond – is of vital importance. Conventional data encryption methods or cryptographic solutions, such as Advanced Encryption Standards (AES), translate data into a secret “code” that can only be decoded by people with access to a decryption key. These methods protect data as it is transmitted across a network or at rest while in storage. Processing or computing on this data however requires that it is first decrypted, exposing it to numerous vulnerabilities and threats. Fully homomorphic encryption (FHE) offers a solution to this challenge. FHE enables computation on encrypted data, or ciphertext, rather than plaintext, or unencrypted data – essentially keeping data protected at all times. The benefits of FHE are significant, from enabling the use of untrusted networks to enhancing data privacy. Despite its potential, FHE requires enormous computation time to perform even simple operations, making it exceedingly impractical to implement with traditional processing hardware.

DARPA developed the Data Protection in Virtual Environments (DPRIVE) program to design and implement a hardware accelerator for FHE computations that aims to significantly reduce the current computational burden to drastically speed up FHE calculations. DPRIVE specifically seeks to reduce the computational run time overhead by many orders of magnitude compared to current software-based FHE computations on conventional CPUs, and accelerate FHE calculations to within one order of magnitude of current performance on unencrypted data.

To develop the target accelerator, DPRIVE will explore new integrated approaches to the full FHE hardware and software stacks. Specifically, the program seeks to develop novel approaches to memory management, flexible data structures and programming models, and formal verification methods that ensure the design of the FHE implementation is effective and accurate. As the co-design of FHE algorithms, hardware, and software will be critical to the program, it will require teams with varied technical expertise to take on the research objectives.

DARPA held a Proposers Day meeting on March 2, 2020, in Cupertino, California to provide more information about DPRIVE to interested researchers.

Full program details are available in the DPRIVE Broad Agency Announcement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s